Tex JoumNnaL or Symzorrc Locic
Volume_2, Number 4, December 1937

COMPUTABILITY AND A-DEFINABILITY
A. M. TURING

Several definitions have been given to express an exact meaning correspond-
ing to the intuitive idea of ‘effective calculability’ as applied for instance to func-
tions of positive integers. The purpose of the present paper is to show that the
computable! functions introduced by the author are identical with the A-definable?
functions of Church and the general recursive? functions due to Herbrand and
Gédel and developed by Kleene. It is shown that every A-definable function is
computable and that every computable function is general recursive. There is a
modified form of A-definability, known as A-K-definability, and it turns out to
be natural to put the proof that every A-definable function is computable in the
form of a proof that every A-K-definable function is computable; that every
M-definable function is A-K-definable is trivial. If these results are taken in con-
junction with an already available* proof that every general recursive function
is A-definable we shall have the required equivalence of computability with
A-definability and incidentally a new proof of the equivalence of A-definability
and \-K-definability.

A definition of what is meant by a computable function cannot be given
satisfactorily in a short space. I therefore refer the reader to Computable pp. 230—
235 and p. 254. The proof that computability implies recursiveness requires no
more knowledge of computable functions than the ideas underlying the defini-

_tion: the technical details are recalled in §5. On the other hand in proving that
the A-K-definable functions are computable it is assumed that the reader is
familiar with the methods of Computable pp. 235-239.

The identification of ‘effectively calculable’ functions with computable func-
tions is possibly more convincing than an identification with the A-definable or
general recursive functions. For those who take this view the formal proof of
equivalence provides a justification for Church’s calculus, and allows the
‘machines’ which generate computable functions to be replaced by the more
convenient A-definitions.

Received September 11, 1937.

2 A. M. Turing, On computable numbers, with an application to the Enischeidungsproblem,
Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1936-7), pp. 230-26S, quoted
here as Computable. A similar definition was given by E. L. Post, Finite combinatory processes—formu-
lation 1, this JourNAL, vol. 1 (1936), pp. 103-105.

2 Alonzo Church, 4n unsolvable problem of elementary number theory, American journal of
mathematics, vol. 58 (1936), pp. 345-363, quoted here as Unsolvable.

3 S. C. Kleene, General recursive functions of natural numbers, Mathematische Annalen, vol. 112
(1935-6), pp. 727-742. A definition of general recursiveness is also to be found in Unsolvable pp.
350-351.

¢ S. C. Kleene, A\-definability and recursiveness, Duke mathematical journal, vol. 2 (1936), pp.
340-353.

153

154 A. M. TURING

1. Definition of A-K-definability. In this section the notion of A-K-definabil-
ity is introduced in a form suitable for handling with machines. There will be
three differences from the normal, in addition to that which distinguishes
A-K-definability from A-definability. One consists in using only one kind [] of
bracket istead of three, { }, (), []; anotheris that x,x |, x !, - - - are used as
variables instead of an indefinite infinite list of the single symbols, and the
third is a change in the form of condition (ii) of immediate transformability,
not affecting the definition of convertibility except in form.

There are five symbols which occur in the formulae of the conversion cal-
culus. They are A, x, !, [and] . A sequence of symbols consisting of x followed
by ! repeated any number (possibly 0) of times is called a variable. Properly-
Jormed formulae are a class of sequences of symbols which includes all variables.
Also if M and N are® properly-formed formulae, then [M][N] (i.e. the sequence
consisting of [followed by M then by], [and the sequence N, and finally by])
is a properly-formed formula. If M is a properly-formed formula and V is a
variable, then A\V[M] is a properly-formed formula. If any sequence is a properly-
formed formula it must follow that it is so from what has already been said.

A properly-formed formula M will be said to be immediately transformable
into N if either:

(i) M is of the form AV[X] and N is AU[Y] where Y is obtained from X by
replacing the variable V by the variable U throughout, provided that U does not
occur in X.

(ii) M is of the form [AV[X]][¥] where V is a variable and N is obtained by
substituting ¥ for V throughout X. This is to be subject to the restriction that
if W be either V or a variable occurring in ¥, then AW must not occur in X.

(iii) N is immediately transformable into M by (ii).

A will be said to be immediately convertible into B if A is immediately trans-
formable into B or if 4 is of the form X[L]Y and B is X[M]Y where L is immedi-
ately transformable into M. Either X or ¥ may be void. 4 is convertible to B
(A conv B) if there is a finite sequence of properly-formed formulae, beginning
with 4 and terminating with B, each immediately convertible into the preceding.

The formulae,

AxAx ! [x 1] (abbreviated to 0),

Axx ! [[x][x 1]]] (abbreviated to 1),

ax[Ax ! [[x][[x][x ']]]] (abbreviated to 2), etc.,
represent the natural numbers. If n represents a natural number then the next
natural number is represented by a formula which is convertible to [S][n]

where S is
A D! [[x] [0] Ex T
A function f(n) of the natural numbers, taking natural numbers as values
will be said to be A\-K-definable if there is a formula F such that [F][n] is con-

§ Heavy type capitals are used to stand for variable or undetermined sequences of symbols.
In expressions involving brackets and heavy type letters it is to be understood that the possible
substitutions of sequences of symbols for these letters is to be subject to the restriction that the
pairing of the explicitly shown brackets is unaltered by the substitution; thus in X[L]¥ the number
of occurrences of [in L must equal the number of occurrences of] .

COMPUTABILITY AND LAMBDA-DEFINABILITY ’ 155

vertible to the formula representing f(n) if n is the formula representing #.
The formula [F][n] can never be convertible to two formulae representing
different natural numbers, for it has been shown® that if two properly-formed for-
mulae are in normal form (i.e., have no parts of the form [AV[M]][N]) and are
convertible into one another, then the conversion can be carried out by the use of
(i) only. The formulae representing the natural numbers are in normal form and
the formulae representing two different natural numbers are certainly not con-
vertible into one another by the use of (i) alone.

2. Abbreviations. A number of abbreviations of the same character as those
in Computable (pp. 235-239) are introduced here. They will be applied in con-
nection with the calculus of conversion, but are necessary for other purposes,
e.g. for carrying out the processes of any ordinary formal logic with machines.
The abbreviations in Computable are taken as known.

‘The sequence of symbols marked with « (followed by a)’ will be abbreviated
to S(e) in the explanations. Sequences are normally identified by the way they
are marked, and are as it were lost when their marks are erased.

In the tables & will be used as a name for the symbol ‘blank.’

pem(¥, o, B) pe(pemy, a)
pem, R, P8 A

pem, here stands for pemy(¥, «, B) and similar abbreviations must be understood
throughout.

pem(¥, a, B). The machine prints « at the end of the sequence of symbols on
F-squares and marks it with 8. —%.

The tables for cxm(8, v,) and cem(8B, v, B) are to be obtained from those
for cr(%B, 7) and ce(B, v) by replacing pe(¥,) by pem(¥, a, f) throughout.

or(, G, a,) ep(cpry, cprs, Cprs, e,)
ooy re(re(cpr, b, 8,), b, @, @)
pre re(re(@, b’ ﬁ)) a, a)

oprs re(re(?[, b) ﬂ)) a, a)

owr(¥, €, a, B). The machine compares S(a) with S(8). —¥ if they are alike;
—E€ otherwise. No erasures are made.

The letters a, b occurring in the table for cpr should not be used elsewhere in
any machine whose table involves cpr. This can be made automatic by using
G and bgy, say, instead of ¢ and b. We shall however write ¢ and b and under-

stand them to mean g, and d,. The same applies for the letters a, - - - , z in
all such tables.
¥ L A
1, v)
not vy R, R 4
b, o, B, v, 8) E, Pa Loty v)

¢ Alonzo Church and J. B. Rosser, Some préperties of conversion, Transactions of the American
Mathematical Society, vol. 39 (1936), pp. 472-482. The result used here is Theorem 1 Corollary
2 as extended to the modified conversion on p. 482.

156 A. M. TURING

a R, E, Pb 1(bts, v)
bl B8 L bl
others R, R, R (o, v)
B R,E, Pb f(bt, b, a)
b1,
not B R, R, R 1(bt, v)
yorbd E PS5 L, L b1,
bts a E, Py A
{others L L bts

b2(%, o, B, 7, 8). This describes the process of finding the partner of a bracket.
If and B are regarded as left and right brackets, then if the machine takes up
the internal configuration bf when scanning a square next on the right of an «
it will find the partner of this « in the sequence S(v), and will mark the part
of S(v) which is between the brackets with & (instead of v). The final internal
configuration is % and the scanned square is that which was scanned when the
internal configuration bf was first taken up.

¢6(¥%, , B, 7, 5, D) f'(8bs, M(“(I‘C(Qb, a,])’ 58,7, o, B8)
8by 4 R,E, Pb 86.(%, a, B, 7, 8, ¢, o)
8b, f(8bs, crm(ve(ve(re(%, b,), j, @), 8, @), 6, 8), @)
{ ¢ R,E,Pa 8b
8bs
not ¢ R, E, Pa re(f'(8bs, b, @), b, B)
b, T R, E, Pj re(pem(8b, 7, d), @, @)
Qub(ur a, 8,7, 6) Qb(ﬂ, a, B, 7, 9, 8)
bt(gl’ B, a, 6) pem(sb(f(c(%’ d), B, d),a B 0,9, d),r, P)

sub(¥, a, B, v, 3). S(y) is substituted for S(8) throughout S(a). The result is
copied down and marked with 5. —¥.

ot(¥, B, a, B). It is determined whether the sequence S(B) occurs in S(a). -9
if it does; —B otherwise.

The tables which follow are particularly important in all cases where an
enumeration of all possible results of operations of given types is required. The
enumeration may be carried out by regarding the operation as determined by a
number of choices, each between two possibilities, L and M say. Each possible
sequence of operations is then associated with a finite sequence of letters L and
M. These sequences can easily be enumerated. The method used here is to re-
place L by 0, each M by 1, follow the whole by 1, reverse the order and regard
the result as the binary Arabic numeral corresponding to the given sequence.
Thus the first few sequences (beginning with the one associated with 1) are:
the null sequence, L, M, LL, ML, LM, MM, LLL, MLL, LML, MML. In the
general table below { and 7 are used instead of L and M.

add(¥, a, &,) f'(abbdy, pem(adds, ¢, @), a)
7 R, E pem(add, ¢, a)

abb;
¢ R, E pem(adds, 7, @)

add; cem(re(¥, @, a), a, a)

COMPUTABILITY AND LAMBDA-DEFINABILITY 157

add(, «, ¢, n). The sequence S(a) consisting of letters ¢ and » only is trans-
formed into the next sequence. —Y.

Cb(%, $’ @’ a, §, ’)) f’(cbl, r‘(@) b, a)’ a)
¢ R, E, P} .

ch
] R, E, Pb 3

¢h(¥, B, €, a, §, 1) is an internal configuration which is taken up when a choice
has to be made. S(e) is the sequence of letters { and n determining the choices.
—9 if the first unused letter is {; —® if it is 5: it is then indicated that this
¢ or n has been used by replacing its mark by . When the whole sequence has
been used up these marks are replaced by « again and —@.

c«h@, B, €, a, §,) R cch

cch 4 E, Pa «hA, B, €, o, §, 9, 0)

cchs cb(f(“b’) b, G), f(ccbb b) a)) G) a, {, ‘77)
cchs E, Po, L A

cchs E, Ps, L Vij

«h®, B, €, «, ¢, 7). This differs from ch in that the internal configurations
A and B are taken up when the same square is scanned as that which was scanned
when the internal configuration cch was first reached, provided that this was an
F-square.

3. Mechanical Conversion. We are now in a position to show how the con-
version process can be carried out mechanically. It will be necessary to be able
to perform all of the three kinds of immediate transformation. (iii) can be done
most easily if we can enumerate properly-formed formulae. It is principally for
this purpose that we introduce the table for pff(%, a).

fun?(¥, «, 8, 7) pem (cvm(pema(crm(pem(¥, 1, 7), 8, v), 1, L)y &%), [,)
fun?(¥, «, B, 7). [S(a)][S(B)] is written at the end and marked with y. —.
h@, B, €, 6) @, B, €, 6, L, M)
«h¥, B, €, 0) c«h¥, B, €, 6, L, M)
The choices will be determined by a sequence made up of letters L and M.
pii(¥, €, a,6) pes(c(b(af, pffs, €, 6), 3, 5, x, 5, X)
pifa q(pffs, 2)

P R, R cch(pffs, pffs, €, 6)
pffa q af

others R, R pifs

pffa

€ af

; pife
others R, Pa, R pffs

R, R ccb(pffh pff‘: G) 0)

pife {E af
others R, R pifs
{; ore ar

pffs .
others R, Pb, R pifs

158 A. M. TURING

ar ch(ne, ch(comp, ab, €, 6), €, 6)
ne pez(ney, ;, X)
ne; ch(pe(ney, '), af, €, 6)
comp pe(funt(af, a, b, 1), ;)
ab pes(aby, ;, A, x)
ab, cb(pe(ab;, ‘)) abz, G) 0)
ab. pe(ce(pe(af, 1), @), D
af e(e(ch(fin, pffi, €, 6), @),)
fin q(r(x(finy)), ;)
Jnot q R, Pa, R fimy
fim
\a A

pif(¥, G, a, 6). A properly-formed formula is chosen, written down at the end
and marked with a. —%. This is done by writing down successive properly-
formed formulae separated by semicolons, and obtaining others from them by
abstraction (i.e., the process by which AV [M] is obtained from M), by applica-
tion of a function to its argument (i.e., obtaining [M][N] from M and N), and
by writing down new variables. Before writing down a new formula we have the
alternative of taking the last formula as the result of the calculation. In this case
the internal configuration fin is taken up. If a new formula is to be constructed
then two of the old formulae are chosen and marked with a and b: then one of
the internal configurations ab, comp, ne is chosen and the new formula is corre-
spondingly AV[S(a)], [S(a)][S(8)], or V, where V is a new variable. The whole
of the work is separated by a colon from the symbols which were on the tape
previously. The meanings of pes and pes are analogous to pes.

The occurrence of A in this table is of course as a symbol of the conversion
calculus, not as a variable machine symbol.

The immediate transformations (i) and (ii) are described next.

na(%[, @r a, B’ 0) f'(bal) ar a)
A R,E, Pa f'(vas, B,)
va,
others am(¥, a, B)
x or ! R,E, Pb f’(vas, b,)
vas
others R be(pe(vas, x), [,], @, ¢)
bas R, Pd ch(pe(vas, 1), bt(va,, vas, ¢, d), €, 0)
bay re(re(re(“m(e(%’ d)’ a, ﬁ)) b: a)’ a, a)’ () a)
bas Cﬂn(“(u(‘fﬁ(bﬁo, a, a), b, a), ¢, @), b)f)
s sub(e(e(¥, 9), f), a, £, @, B)

va(¥, €, «, B, 6). An immediate transformation (i) is chosen, and if permissible
is carried out on S(a), the result being marked with 8. If the chosen transforma-
tion is not permissible then S(g) is identical with S(a). —¥.

red(Y, a, B) f/(reby, redu, a)

COMPUTABILITY AND LAMBDA-DEFINABILITY 159

[R b(veds, [,], @,)
Ted,
not | redis
reds E, Pf re(f(reds, b’ a)’ b: aaf)
l'eb; bf(tebb [’]: a, d)
red, f’ (veds, b, c)
{x R, E, Pf * (vebe, B, c)
tebs
not A tedss
xor! R, E, Pg f'(rebds, b,)
rede :
[R’ E’ Pf Q(rebh C)
redr E, Pf rebs
reds f'(reds, redio,)
A R, E, Pk f’(vedu, b, ¢)
ubg
not A R, E, Pk reds
(x or! R, E, Pj f'(redy, b, ¢)
ubu {
(L cpr(tedus, Tedys, 5, g)
redie dt(redis, re(reds, 7, &), d, 7)
redso gub(re(re(re(ve(¥, d, @), f, a), #, @), g, @)k, g, d, B)
tedis re(re(re(re(re(re(cxm(¥, o,), 4, @), ¢, a), ¢, @), f, a), k, @), §, @)

red(¥, «, B). An immediate transformation (ii) is carried out on S(a), supposing
that S(a) is properly-formed. The result is marked with 8. —»¥. If the transfor-
mation is not possible or permissible S(8) is identical with S(a). Considerable
use is made of the hypothesis that S(a) is properly-formed. Thus if its first
symbol is [then it must be of form [L][N]and if in addition the second symbol
is \ then it is of form [AV[M]][N]. The internal configuration reds is never
reached unless S(«) is of this form, and in that case it first occurs when V has
been marked with g, M with ¢, and N with d, the remaining symbols of what was
S(a) being now marked with « or f. It is then determined whether the immediate
transformation (ii) is permissible: if it is then vedyo is taken up and the substitu-
tion carried out.

ime(¥, €, a, 8, 0) ch(f'(imey, imee, @), re(imey, a, a), €, 6)
[R, E, Pc ch(ime, ime;, €, 6)

ime
not | R,E, P¢c ime

imcs te(cm(gt) a, B); ¢ a)

ime, q(bt(imes, [, 1, «, @),)

ime, ch(vc, ch(xe, e, €, 6), G, 6)

be va(imes, €, a, b, 6)

e red(imes, a, b)

er : pif(xed(ers, b, d), €, b, 9)

160 A. M. TURING

& cpr(e(imes, @), e(e(crm(imes, o, 3), d), b), 4, a)
tmes cem(cem(crm(ve(re(e(¥,), ¢, @), 8, @), @, B), b, B), ¢, B)
ime(¥, G, , B, 6). An immediate conversion is chosen and performed on S(a).
The result is marked with 8. —¥.

cond(¥, a, B, 0 - pe(crm(cony,, a, d),)
conb, ch(ime(convs, au, d, £, 6), re(¥, &, B), au, 6)
CoTds e(te(com),, f’ d)’ d)
au q(auy, .)
{8 am¥, a, f)
a
not € R, E R awy

conv(¥, a, B, 6). A conversion is chosen and performed on S(a). The result is
marked with 8. —¥. The sequence determining the choices is S(6). If it should
happen that this sequence is exhausted before the conversion is completed then
the final formula is the same as the original, i.e. S(a). The half finished conversion
work is effectively removed from the tape by erasing the marks.

4. Computability of \-K-definable functions. It is now comparatively
simple to show that a \-K-definable function is computable, i.e., that” if f(») is
A\-K-definable then the sequence v, in which there are f(n) figures 1 between
the nth and the (n+1)th 0, and f(0) figures before the first 0, is computable.

To simplify the table for the machine which computes v, we use the abbrevi-
ation Wr(¥, M,) for an internal configuration starting from which the machine
writes the sequence M of symbols at the end, marking it with « and finishing in
the internal configuration . Thus the table for Br(¥, Ax |, a) would be:

Be(A, x|, @) pe(Wry, =)
Br, P\, R, Pa, R, Px,R, Pa, R, P!, R, Pa A

We use one more skeleton table:

P8, a, B) funt(e(ve(¥, o, @), a), B, a, a)

If F is the formula which A-K-defines f(n) then the table for the machine
which computes v, is:

b Py, R, Py Br(by, F, k)

by ‘ LW (b, kxlkx V[x'1],9)

bs cem(by, 3, &

bs We(ba, Ax ! ! [Ax[ax! [[x][[[x“][x]][x']]]]].u)
ba funt(cny, &, &, v)

m abd(emy, s, L, M)

m crm(cng, i: d)

(4] Cf)(re(ma, dt m)’ ple(mh d) 1‘), 1, S)
g conv(cny, v, w, S)

oy cpr(cns, cns, w, m)

T Computable p. 254.

COMPUTABILITY AND LAMBDA-DEFINABILITY ' 161

(217 C(C(C(mm, w), ’n), d)
Cityo ch(ctzo, emyo, cn, s)
oy q(cnz, m)
oy E q(cng, m)
cns E q(I(ceng), m)

(] R E pem(q(I(ens), m), 1, o)
My

not] pem(e(e(e(e(bas, s), 9), w), m), 0, a)

ba, pl8(ba, k,)

When the machine reaches the internal configuration ba for the (n+1)th time
(#20) the tape bears the formula F marked with %, the formula n representing
the natural number # (or rather a formula convertible into it) marked with %,
0 marked with 7, and S marked with %. A formula convertible into one repre-
senting some natural number r is then chosen and marked with m. This brings
us to the internal configuration cns. A conversion is then chosen and performed
on S(v), i.e. on [F][n]. The result is marked with w and compared with S(m).
If they are not alike the letters w, m are erased and we go back to cm, after
transforming the sequence S(s) which determines the choices into the next
sequence. If they are alike then 1 is written at the end repeated r times followed
by 0, all of which is marked with a. In order to have the correct number of figures
we make use of the fact that the number of brackets occurring consecutively at
the end of S(m) is r+2. The machine is back in the internal configuration ba as
soon as S(k) has been changed to [S][S(#)].

No attempt is being made to give a formal proof that this machine has the
properties claimed for it. Such a formal proof is not possible unless the ideas of
substitution and so forth occurring in the definition of conversion are formally
defined, and the best form of such a definition is possibly in terms of machines.

If f(n) (n21) is \-definable, i.e. if F is well-formed (Unsolvable p. 346), then
the present argument shows also that f(n) is then computable in the sense that
a function g(n) of positive integers is computable if there is a computable se-
quence with g(n) figures 1 between the nth and (s+1)th figure 0.

5. Recursiveness of computable functions. It will now be shown that every
computable function f(n) of the natural numbers, taking natural numbers as
values, is general recursive. We shall in fact find primitive recursive functions
j(x), ¢(x) such that if {(x) is the (x+1)th (=0, 1, 2, - - -) natural number y
for which j(y) =0, then f(x) is given by

f(z) = ¢(§(x)).
It is easily seen that such a function is general recursive (cf. Unsolvable p. 353);
also it can easily be brought into the form,*
f(x) = (ey[iCz, 3) = 0])

$ This may be done by defining i(x, y) as follows:

e0) =0,
e(S(x)) = S(e(x)) . if j(z) = 0,
= ¢(x) otherwise,

i(z, y) = Max (0, x—e(y)),
S(x) as usual meaning x+1.

162 A. M. TURING

(where ey[i(z, y)=0] means ‘the least natural number y for which i(x, y) =0,
and i(x, y) is primitive recursive) which plays a central part?® in the theory of
general recursive functions. It would be slightly simpler to set up recursion
equations for f(x) but in that case it would be necessary to show that they were
consistent; this is avoided by confining ourselves to primitive recursions (whose
consistency is not likely to be doubted) except at the step from j(x) to £&(x).

We are given the description of a machine which computes f(2). The machine
writes down sysmbols on a tape: amongst these symbols occur figures 0 and 1.
The number of figures 1 between the nth and the (n+ 1)th figure 0 is f(n).
At any moment there is one of the symbols on the tape which is to be distin-
guished from the others and is called the ‘scanned symbol.” The state (complete
configuration) of the system at any moment is described by the sequence of
symbols on the tape, with an indication as to which of them is scanned, and the
internal configuration (m-configuration in Computable) of the machine. As names
for the symbols we take So, S, - - -, Sn-1 and for the internal configurations
Q1 @2, - - » gr. Certain of these are names of definite symbols and internal con-
figurations independent of the machine; in fact,

So always stands for ‘blank,’
S) always stands for 0,
S, always stands for 1,
@ always stands for the initial internal configuration.
If at any time there is the sequence
Smscp"'ysn»"’:su.,.g (k>0,l§0)
of symbols on the tape, with the kth symbol scanned and the internal configura-
tion g, this complete configuration may be described by the four numbers,
w= s+ Nsia+ - - - + N¥isy,
sk, &, and
9 = Skt Nseget - - FN s
or by the single number,
U = p(wy Sky & 9),
where
? (xly X2, X3, xl) = 2213:’5‘37“'

Each complete configuration of the machine is determined by the preceding
one. The manner of this determination is given in the description of the machine,
which consists of a number of expressions each of one of the forms ¢.S,S,Lgs or
¢:S.SvNgp or ¢.S.SwRqe. The occurrence of the first of these means that if in
any complete configuration the scanned symbol was S, and the internal con-
figuration ¢, then the machine goes to the next complete configuration by re-
placing the scanned symbol by S, and making the new scanned symbol the
symbol on the left of it and the new internal configuration go. In other words if a
complete configuration be described by the number,
p(ser + Nsez + -+ - + N2y, 5,8, i1+ Nswpa + - - - + Nsi)

= p(si1 + Nf, s, ¢, Sen + Ng),

% Compare the two papers by Kleene already quoted.

COMPUTABILITY AND LAMBDA-DEFINABILITY g 163

and if ¢.5.S.Lge occurs in the description of the machine, then the number
describing the next complete configuration is
p(fy si1, ', " + N(sen + Np)).
In the case where we have 4eSeSyNge the next complete configuration will be
described by
P(Sk—l + Nf: S’, t': Skq1 T+ Ng))
and in the case of ¢.5,S,-Rq. by
?(3' + N(sk-l + Nf): Sk+1y t” g)°
We may define a primitive recursive function dy(s, ¢) (or da(s, t) or dy(s, t)
to have the value 1 or 0 according as an expression of the form quS:SeLqy
(or ¢:5,5,-Ngi or ¢.S.SwRqe) does or does not occur in the description of the
machine. In each of the three cases z(s, #) is to have the value s’ and c(s, t) to
have the value #'. ¢(x), r(x) are to be respectively quotient and remainder of z
on division by N, and @,(x) (r=2, 3, S, 7) is to be the greatest integer % for
which r* divides x. These functions are primitive recursive.
Then if we put
8(x) = di((), () p(q(@x(x)), r((%)), c((), @s(%)), 2 @a(), @5(x)) + N a5e(x))
+da(ws(2), w5(2))p(m(%), 3(ma(2), (), c(m(), @s(x)), wi(x))
(-ii-ds(@(x), @6(x))p(2(ms(%), @(x)) + N wo(), r(@(2)), c(ws(x), m(x)), g((2))),
an
#(0) = (0,0, 1, 0) =5,
#(S(x)) = 6(u(x)),
#(x) will be the number describing the (x+1)th complete configuration of the
machine.
g(x, y) is to be defined by
§(5(2),9) =2 (allz, y 2 0), g(0, 1)
£(0,0) = 2, 800, 2)
80,2) =2 (2 3),

0,
1

and j(x) by,
7)) = g(as(u(x), 2(ws(u(x)), ws(u(x)))).
Then j(x) =0 means that in going from the (x+1)th to the (x+2)th complete
configuration the machine prints a figure 0: if j(x) =1 it prints 1: j(z) =2 other-
wise. £(x) is defined to be the (x+1)th natural number y for which j(») =0, and
¢(x) as follows:
$(0) = 0,
6(S(x) =0 if j(x) =0,
= ¢(x) if j{x) =2,
= S(¢(x)) if j(x) = 1.
Then ¢(x) is the number of times 1 has been printed since the last 0, reckoned
at the (x+1)th complete configuration. ¢(£(x)) is the number of times 1 occurs
between the xth and the (x+1)th figure 0, its value when x=0 being the number
of figures 1 which precede all figures 0. But these are the properties which
define f(x).

PRINCETON UNIVERSITY

